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Single-electron transistor (SET) at room temperature has been demonstrated as a promising device for
extending Moore’s law due to its ultra-low power consumption. Existing SET synthesis methods synthesize
a Boolean network into a large reconfigurable SET array where the height of SET array equals the number
of primary inputs. However, recent experiments on device level have shown that this height is restricted to a
small number, say, 10, rather than arbitrary value due to the ultra-low driving strength of SET devices. On
the other hand, the width of an SET array is also suggested to be a small value. Consequently, it is necessary
to decompose a large SET array into a set of small SET arrays where each of them realizes a sub-function
of the original circuit with no more than 10 inputs. Thus, this article presents two techniques for achieving
area-efficient SET array decomposition: One is a width minimization algorithm for reducing the area of a
single SET array; the other is a depth-bounded mapping algorithm, which decomposes a Boolean network
into many sub-functions such that the widths of the corresponding SET arrays are balanced. The width
minimization algorithm leads to a 25%–41% improvement compared to the state of the art, and the mapping
algorithm achieves a 60% reduction in total area compared to a naı̈ve approach.
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1. INTRODUCTION

As the integration density of a design increases with the advances of process technolo-
gies, high power consumption per chip has become one of the primary bottlenecks to
extend Moore’s law. To overcome this problem, a variety of ultra-low-power devices have
been proposed in recent years. Among these devices, some demonstrations have shown
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that single-electron transistors (SETs) operating at room temperature is a promising
candidate to extend Moore’s law in the future [Liu et al. 2015; Postma et al. 2001;
Tan et al. 2003; Zhuang et al. 1998]. Furthermore, the electrostatic properties of SET
through in-depth device simulation were presented in Liu et al. [2011] and Saripalli
et al. [2010], which demonstrated an order-of-magnitude reduction in energy-delay
product compared to traditional Complementary Metal-Oxide-Semiconductor (CMOS)
devices.

Since an SET involves only a few electrons in its switching operation, it suffers
from low transconductance and degraded output resistance, making it essential to
co-explore a non-CMOS logic architecture. To this end, a binary decision diagram-
(BDD) based [Bryant 1986] logic architecture was proposed in Kasai et al. [2001] as
a suitable architecture for implementing logic using this ultra-low-power nanodevice.
Under this architecture, a Boolean circuit is implemented by mapping its BDD onto
an SET array, which is a reconfigurable hexagonal nanowire network controlled by
Schottky wrap gates [Eachempati et al. 2008; Hasegawa and Kasai 2001]. The latest
simulation [Liu et al. 2015] further showed that the BDD architecture achieved a
higher power efficiency than CMOS at the same throughput delay.

The great potential of SET has driven several synthesis research recently. The first
automated product-term-based synthesis approach was proposed in Chen et al. [2011,
2013a], followed by a verification method proposed in Chen et al. [2013b]. The authors
in Chiang et al. [2013] and Zhao et al. [2014] proposed synthesis methods to reduce the
number of hexagons in the SET arrays. Nonetheless, the area of an SET array is the
product of its width and bounded height. As a result, Chen et al. [2014, 2015] and Liu
et al. [2014, 2015] aimed to reduce the width of the SET array.

However, the width minimization techniques proposed in Chen et al. [2014, 2015]
and Liu et al. [2014, 2015] failed to explore all the factors that are in favor of width
reduction simultaneously, for example, variable ordering and product term ordering.
Furthermore, the existing synthesis methods mentioned above synthesized a Boolean
network into an SET array with height equal to the number of primary inputs (PIs). In
practice, however, an SET array with a large height may result in incorrect output due
to its low transconductance. The size of an SET array is mainly limited by the process
of fabricating the quantum dot and the three branches in its structure. Factors such as
the lithography technology and process variations including the doping concentration
variations also restrict its size [Liu et al. 2013, 2015]. Thus, SET array decomposition
is an important issue from the realization viewpoint.

In this article, two algorithms are proposed to deal with the above issue: (1) A width
minimization technique: It minimizes the width of an SET array by effectively explor-
ing the combinations of all the favorable factors to width reduction simultaneously.
(2) A depth-bounded mapping algorithm: It decomposes a Boolean circuit into an SET
network under a height constraint and tries to balance the width of each SET array.
Differing from the traditional Field-Programmable Gate Array (FPGA) mapping, each
sub-function in the mapped network will be implemented by an SET array using the
proposed width minimization synthesis algorithm, rather than a look-up table (LUT).

We conducted the experiments on a set of IWLS 2005 benchmarks [IWLS 2005]. The
experimental results show that the proposed width minimization technique improves
29%, 41%, and 25% width compared to Chen et al. [2014], Liu et al. [2015], and Chen
et al. [2015], respectively. Also, the SET network produced by the proposed mapping
algorithm reduces 60% area compared to a naı̈ve approach.

The main contributions of this work are twofold: (1) This is the first SET array
synthesis work considering the height constraint of SET arrays. (2) An area-aware
SET array decomposition algorithm composed of a width minimization algorithm and
a depth-bounded mapping algorithm is proposed.
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Fig. 1. (a) An SET array. (b) The structure of a node device and its symbols for configuration. (c) An example
of a ⊕ b. (d) An example of symmetric fabric.

The rest of the article is organized as follows. Section 2 describes the background
of SET. Section 3 presents the proposed algorithm for SET array width minimization.
Section 4 presents the proposed depth-bounded mapping algorithm for the SET net-
work. Section 5 shows the experimental results. Section 6 concludes the article.

2. BACKGROUND

2.1. Reconfigurable SET Array

A reconfigurable SET array can be represented as a hexagonal network shown in
Figure 1(a). There is a current source at the bottom and a current detector at the top.
Each sloping edge pair in the SET array represents a node device. A node device has a
wrap gate SET on the both of its edges as shown in Figure 1(b). The node devices on
the same row of the SET array are controlled by the same variable.

A sloping edge in the SET array can be configured as active high, active low, short,
or open. For an active high edge, it is non-conducted and has no current if its control
input is logic 0 and presence of current if the control input is logic 1 and vice versa for
active low edge. A short (open) edge is electrical short (open). The functionality of an
SET array is determined by path switching where electrons are transported from the
current source to the current detector. The output value of an SET array is logic 1 if
and only if a current is detected by the current detector.

An example of realizing a function a ⊕ b by an SET array is shown in Figure 1(c).
The current will be detected at the top only when either (a = 1, b = 0) (left path) or
(a = 0, b = 1) (right path). In the rest of this article, vertical edges in the hexagons will
be omitted for brevity since they are electrically short.

2.2. Symmetric Fabric Constraint

To decrease the number of input metal wires used for programming an SET array, the
symmetric fabric constraint introduced in Eachempati et al. [2008] is imposed to all
the edge configurations. The constraint enforces the configuration of an edge pair of
a node device to be one of (high, low), (low, high), (short, short), and (open, open) as
shown in Figure 1(b). Furthermore, the configurations of (high, low) and (low, high) are
not allowed to appear in the same row of an SET array simultaneously. An example of
symmetric fabric is shown in Figure 1(d), where both edge pairs are configured as (left,
right) = (high, low).

2.3. Product-Term-Based SET Array Synthesis

The product-term-based approach [Chen et al. 2011, 2013a, 2014, 2015; Chiang et al.
2013; Liu et al. 2014, 2015] synthesized an SET array for each primary output (PO) of a
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Fig. 2. Types of Branch-then-Share [Liu et al. 2014].

given Boolean network.1 This approach can be summarized as two steps: first, deriving
the disjoint sum of product (DSOP) of Boolean circuits and, second, configuring a
path in the SET array for each disjoint product term such that no invalid paths are
created. Here, DSOP instead of sum of product is used to avoid multiple path conduction
simultaneously since an SET has a low driving strength. In this article, each variable in
a product term is denoted as 0 (complemented), 1 (uncomplemented), or 2 (don’t-care).

2.4. Branch-Then-Share

Branch-then-Share (BTS) [Chiang et al. 2013; Liu et al. 2014] is a relationship between
two product terms under the symmetric fabric constraint. It indicates that two product
terms branch in one row and merge in the next row and share the path in all the
other rows. By exploring this sharing-relationship, the total width of a synthesized
SET array can be significantly reduced.

BTS can be classified into two types according to the row configurations involved
as shown in Figure 2. The twin type (invert type) indicates that a BTS occurs at two
consecutive rows with the same (opposite) row configurations. Only half of all the BTSs
are shown in Figure 2, and the rest of them can be derived by swapping the position of
two product terms P1 and P2.

2.5. SET Network

In the realization of SET array, each SET array has a restricted height and width as
mentioned. To implement a large Boolean function, decomposing a Boolean function
into many sub-functions, and synthesizing each sub-function with a small SET array
is necessary. These small SET arrays are then connected as an SET network. Note that
the current at the current detector of a small SET array will charge the capacitance at
the output. This output capacitance behaves as a charge integrator that converts the
charging current to a voltage. Thus, the output of a small SET array can be considered
as an input to the following SET arrays.

2.6. FPGA Mapping and Cut Enumeration

Conventional LUT-based FPGA mapping flows decompose a Boolean circuit/function
through cut enumeration and map the sub-functions into LUTs. In recent years, many
state-of-the-art FPGA mapping algorithms have been proposed to map Boolean func-
tions into FPGA effectively [Mishchenko et al. 2007b; Heyse et al. 2012; Du et al. 2013;

1The Boolean functions realized by the SET arrays have to be single output since there is only one current
detector at the top of an SET array.
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Fig. 3. Illustration of cut computation.

Souza and Silva-Filho 2013; Ghosh et al. 2014]. However, the mapping flow for SET ar-
rays differs from the conventional FPGA mapping flows since each sub-function in the
mapped network after decomposition will be implemented by an SET array, rather than
an LUT. Thus, in this section, we only introduce the background of cut enumeration
used in the proposed algorithm.

A network is K-bounded if and only if the number of fanins of any node in the network
does not exceed K. Given a value K, the network used for mapping, called the subject
graph, has to be K bounded. In this article, the subject graph is an And-Inverter Graph
(AIG).

A cut c of a node n is a set of nodes in its transitive fanins such that any path from a
PI to n passes through at least one node in the cut. The size of a cut refers to the number
of nodes in that cut. A trivial cut of a node is the cut composed of the node itself only. A
cut is said to be K feasible if the size of the cut is no more than K. A representative cut of
a node is the best K-feasible cut currently considering the mapping goal. A cut c1 is said
to be dominated by another cut c2 of the same node if and only if c2 is the subset of c1.

A mapping pass is a procedure of assigning one representative cut to each non-PI
node according to a specific mapping goal in the bottom-up topological order. When a
mapping pass is finished, each non-PI node will have a representative cut.

Cut enumeration [Cong et al. 1999] is the standard procedure for enumerating all
K-feasible cuts of each node in the AIG. For the PI nodes, the K-feasible cut is the
trivial cut. For the non-PI nodes, we need to perform the merging operation on the cut
sets of its fanin nodes. The merging operation � of cut sets A and B of two nodes with
respect to the K-feasible cut is as follows:

A� B = {u ∪ v|u ∈ A, v ∈ B, |u ∪ v| ≤ K}. (1)

Let n1 and n2 denote the two fanin nodes of a non-PI node n, and �(n) denotes the set
of all K-feasible cuts of node n. �(n) can be generated by merging �(n1) and �(n2) from
Equation (1) and removing the dominated cuts. The trivial cut of node n is also added
into �(n). Note that by recursively processing each node n in bottom-up topological
order, �(n1) and �(n2) will be ready before computing �(n). An example of exhaustive
cut enumeration process with K = 3 is shown in Figure 3. The cut {s} is the trivial cut
of node s. The cuts {p, a, b} and {q, a, b} of node s are removed since they are dominated
by the cut {a, b}. Furthermore, considering the cut set of node t, the cuts {p, q, c, d} and
{a, b, c, d} of node t are excluded as well since they are not 3-feasible cuts.

Since enumerating all the K-feasible cuts is expensive, a priority cut heuristic was
proposed in Mishchenko et al. [2007b] that computes only a small number, L(4 ∼ 8),
of K-feasible cuts at each node. Note that the trivial cut of the current node will also
be added into the cut set. Thus, this heuristic confines the cut enumeration process to
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Fig. 4. Example of swapping the location of the connected vertices of (a) an undirected edge (b) a directed
edge.

produce (L + 1)2 candidate cuts at most at each node and elevates the efficiency. To
avoid missing good cuts, the best cut from the previous mapping pass is also added to
the (L + 1)2 candidate cuts derived from the fanin nodes in the priority cut heuristic.

3. SET ARRAY WIDTH MINIMIZATION

This section introduces the proposed width minimization algorithm, which minimizes
the width of SET array by maximally exploring BTS product terms among the disjoint
product terms derived from the BDD. In addition to maximizing the number of BTS,
minimizing the number of product terms before synthesis can reduce the width of
the resultant SET array. This is because each product term of a Boolean function
corresponds to a path in an SET array. Since minimizing the number of product terms
is not the main objective of this work, the technique we applied to achieve this will be
briefly described in the section of experimental results.

3.1. BTS Identification

Since BTS product terms share partial paths in the SET array, maximally identifying
BTS is beneficial to width reduction in the synthesis process.

3.1.1. BTS Modeling. Given a DSOP of a Boolean function, the number of BTS in the
synthesis process is affected by three factors: (1) Variable order in the product terms,
(2) Row configuration of SET array, and (3) Product term order during synthesis. To
consider these factors within an SET array simultaneously, we propose to model their
relationship as a one-dimensional mixed graph [Weisstein 1999] where the edges are
either directed or undirected.

In a one-dimensional mixed graph G, each vertex corresponds to an input variable
of the Boolean circuit. The vertex order from left to right of G represents the top-down
variable order in the SET array. Consecutive integers starting from 1 in ascending
order are assigned to each vertex from left to right as its location. Each edge (a, b)
connecting vertices a and b in G represents a possible BTS relationship between two
product terms, where a and b correspond to branching and merging variables of the
BTS, respectively.

An edge (a, b) is undirected if and only if the relative location of a and b will not affect
the existence of the corresponding BTS. For example, in Figure 4(a), an undirected edge
(a, b) indicates that the corresponding BTS will still exist if the vertices are swapped.
On the contrary, an edge (a, b) is directed if and only if the relative location of a and
b will affect the existence of the corresponding BTS. For example, a directed edge (a,
b) in Figure 4(b) indicates that the corresponding BTS only exists when the edge is
forwarding (pointing to the right). If the connected vertices of a directed edge are
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Fig. 5. (a) The initial mixed graph built from the product terms. (b) The mixed graph with an improved
vertex order after the BTS exploration algorithm. (c) The final mapping of SET array with consecutive BTSs.

swapped, that is, the edge is reversed, then the BTS is invalid due to the symmetric
fabric constraint violation.

For a BTS, the branching variable and the merging variable are adjacent, as shown
in Figure 2. Thus, edges with length greater than 1 are invalid BTSs. In summary,
a BTS represented by an edge e in the mixed graph is valid if and only if e satisfies
(1) Length(e) = 1 and (2) e is either an undirected edge or a forwarding edge.

Figure 5(a) presents the mixed graph built from an example with four disjoint prod-
uct terms. Variable e is omitted since it is not involved in any BTS. Specifically, by
iteratively checking the variables within pairs of disjoint product terms, we can find
that the disjoint product terms P1 and P3 form a BTS with variables a and c accord-
ing to Figure 2. Besides, we can also identify that the relative locations of a and c do
not affect the existence of the corresponding BTS. Thus, we use an undirected edge
connecting them in the mixed graph to represent the potential BTS between P1 and
P3. Similarly, we can also find that P3 and P4 form a BTS with the variables b and c.
However this BTS can be formed if and only if the location of c is higher than that of b.
Thus, we use a (reversed) directed edge connecting them in the mixed graph to indicate
the corresponding BTS. There are three BTSs presented by three edges in the mixed
graph, but none of them are valid.

The two product terms forming a BTS are labeled on the edge, and its order indicates
the path configuration order in the synthesis process. For example, the BTS P1 P3 in
Figure 5(a) represents that P1 will be configured before P3. To maximally configure
more consecutive BTSs, we prefer to have a chain of BTSs where the right product
term of the ith BTS is the same as the left product term of the (i + 1)th BTS. Thus,
we label a BTS P4 P2 instead of P2 P4 in Figure 5(a) since P4 P2 forms a longer chain of
consecutive BTSs, (P1 P3 → P3 P4 → P4 P2), which is more favorable to width reduction.

3.1.2. Conflicting BTSs Removal. Conflicting BTSs are BTSs that cannot exist simulta-
neously under any variable order, which need to be removed. There are two kinds of
conflicts. The first one is BTS type conflict: In any vertex pair, only one type of BTS
with more edges will be preserved in the mixed graph since the invert-type BTSs and
twin-type BTSs are opposite in the row configuration.

The second kind of conflict is product term conflict. Since each product term can
have a BTS relationship with at most two other product terms in the SET array, it is
necessary to remove the extra ones. In the process of removing conflicting edges, an
edge representing a BTS in a longer chain of consecutive BTSs will be kept.

In the example of Figure 5(a), if there is another BTS P3 P5, it will be removed since
the consecutive BTS (P1 P3 → P3 P5) is shorter than (P1 P3 → P3 P4 → P4 P2).

3.1.3. Exploring Maximal Number of BTS. We propose an algorithm to adjust the location
of each vertex of a given mixed graph iteratively such that the number of valid BTSs
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ALGORITHM 1: BTS Exploration Algorithm
Input: A mixed graph.
Output: A mixed graph with maximal valid |BTS|.

1: procedure ExploreBTS( )
2: InitializeVertexOrder( );
3: while (iterationCnt < iterationNum ‖ valid |BTS| is increasing) do
4: for (each edge e) do
5: ComputeCOG(e);
6: if (e is reversed) then
7: ComputeShiftedCOG(e)
8: end if
9: end for

10: for (each vertex v) do
11: ComputeNewLocation(v);
12: end for
13: SortVertexLocation( );
14: AssignIntegerLocation( );
15: CalculateValidBTS( );
16: end while
17: return mixed graph;
18: end procedure

is maximized. That is, the connected vertices are placed as close as possible, and the
reversed edges tend to be changed as forwarding ones.

The present location of a vertex v is denoted as lv. The center of gravity (COG) of an
edge e is computed as:

COG(e) =
(∑

v∈e

lv

)/
2, (2)

where 2 represents the number of vertices connected to an edge e. The COG acts as an
attractive force between two connected vertices due to location average. For example,
the COG of the edge (b, c)= (2 + 3)/2 = 2.5.

To change a reversed edge into a forwarding one, we also define ShiftedCOG for a
reversed edge as follows:

ShiftedCOG(e) = 2lbranch − COG(e), (3)

where lbranch is the location of the branching node of edge e. This is because for a reversed
edge e, we hope the merging node will be placed on the right side of the branching node
in order to become a forwarding edge. Equation (3) can achieve this by shifting the COG
of e. Also, the longer the distance between the merging and the branching nodes, the
stronger force this equation will create. In the example of Figure 5(a), for the reversed
edge (b, c), its ShiftedCOG = 2 × 3 − 2.5 = 3.5, which is at the right side of branching
node c.

Algorithm 1 outlines the BTS exploration procedure. The initial vertex order can
be arbitrary or given. In each iteration, the algorithm traverses all the edges and
computes either the COG or the ShiftedCOG of each edge. Next, the algorithm computes
the new location of each vertex v based on COG or ShiftedCOG of all its connected
edges, Ev. If v is a merging node of a reversed edge e, then we add ShiftedCOG(e)
into ShiftedCOG_Sum; otherwise, we add the COG of the connected edges of v into
COG_Sum. The new location of a vertex v, denoted as l′v, is computed as follows:

l′v = (COG Sum + ShiftedCOG Sum)/|Ev|, (4)

where |Ev| is the degree of vertex v.
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ALGORITHM 2: Synthesis for Width Minimization
Input: A single-output Boolean function f .
Output: SET arrays.

1: dsop = CollectDSOP( f );
2: G = ModelBTS(dsop);
3: ExploreBTS(G);
4: SynthesizeSETArray(dsop, G);
5: return SET Arrays;

By sorting the new locations of each vertex, we derive a new vertex order and re-
assign a new consecutive integer index to each vertex starting from 1. Finally, we
calculate the number of valid BTS. The iteration continues until the number of valid
BTS saturates or a given iteration limit is reached.

Take Figure 5(a) as an example, l′a = (2)/1 = 2, l′b = (3.5 + 3)/2 = 3.25, l′c = (2.5 +
2)/2 = 2.25, and l′d = (3)/1 = 3. With these new locations, the new vertex order of the
mixed graph becomes a → c → d → b after the first iteration. Similarly, with one more
iteration, the vertex order will be changed as a → c → b → d and the new mixed graph
is shown as Figure 5(b). In the next iteration, the number of valid BTS saturates since
the vertex order is frozen. Thus, the iteration terminates.

3.2. Synthesis for Width Minimization

Algorithm 2 outlines the SET array synthesis for width minimization, which minimally
synthesizes one SET array for the sub-function of each PO2.

First, the DSOP of a Boolean sub-function is collected. Next, we model all possible
BTSs among the product terms into a mixed graph G and apply the proposed BTS
exploration algorithm to explore a maximal number of BTSs.

Finally, we determine the variable order, row configurations, and product term order
from G before synthesis as follows. First, variables having no BTS are moved to the
top of the SET array by the original order, and the vertex order of G indicates the
following top-down variable order. Second, the BTS type of the edges between each pair
of adjacent vertices determines the row architecture of the SET array in the top-down
order. For example, if the current row architecture is (high, low), then the twin- (invert)
type BTS indicates that the next row architecture must be (high, low) ((low, high)).
Third, product terms are reordered such that the ones having a BTS relationship are
put in consecutive order, and the ones involving no BTS remain in the original order.
According to this information, we configure a path for each product term in the SET
array. For example, based on the mixed graph in Figure 5(b), the synthesized SET
array is shown in Figure 5(c).

4. MAPPING FOR SET NETWORK

In consideration of the height constraint [Liu et al. 2015] of the SET array, decomposing
a large SET array into an SET network composed of small SET arrays becomes an
important issue. The SET network can be realized by building an FPGA-like SET chip
with interconnections fabricated by the CMOS process. In this work, the height of each
SET array within the chip is a given constraint, while the width of each SET array is
a variable to be determined by the mapping algorithm for total area minimization.

Since the structure of the SET array is based on the product terms of the corre-
sponding Boolean function, it is complicated to decompose a large mapped SET array

2The proposed method for decomposing a Boolean function into smaller sub-functions will be introduced in
Section 4.
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Fig. 6. Example of mapping an SET network.

into many smaller SET arrays directly. Instead, we move the decomposition task to the
Boolean circuit level and customize the idea in the FPGA mapping [Mishchenko et al.
2007b] to this problem. An example of mapping an SET network from the Boolean
circuit level is shown in Figure 6. After the mapping algorithm, each sub-function in
the input network, represented by AND-INV graph (AIG), is transformed into a BDD.
Then, for each BDD, we apply the SET array synthesis method proposed in Section 3
to derive the corresponding SET array and construct the final SET network.

In an SET network, the width of each SET array is relevant to the function it realizes
under the height constraint K. Since the reserved width of each SET array is identical
in an SET chip, an uneven width distribution among all the synthesized small SET
arrays will lead to a poor resource utilization. Thus, we target at deriving a mapping
that tries to balance the corresponding width of each sub-function. As a result, the
objective function to be minimized in our work is as follows:

TotalArea = MaxWidth × |SETArray|, (5)

where MaxWidth is the maximal width among all the synthesized SET arrays, and
|SETArray| is the number of decomposed SET arrays in the SET network. Note that
both MaxWidth and |SETArray| are variables in the objective function and influence
to each other, making this optimization problem more challenging. Since the depth in
the SET network affects the operation speed and power consumption, we also set the
depth as a given constraint, denoted as Dbound, to maintain the quality of the depth
in this work. Since the structure of SET network is similar to that of FPGA, we take
the optimal depth obtained by the depth-oriented FPGA mapping algorithm with the
same K as an input parameter Dbound in our experiments. In general, a larger K results
in a smaller depth, that is, Dbound, but results in a larger MaxWidth due to a more
complicated sub-function of a cut. The setting of Dbound in the experiments will be
described in Section 5.2.

4.1. Overview of SET Network Mapping Algorithm

The proposed SET network mapping algorithm is shown in Algorithm 3. It starts by
generating a small set of K-feasible cuts at each node using the priority cut heuristic
[Mishchenko et al. 2007b] in the topological order. Next, it analyzes and assesses a
potential width of the SET network to be mapped. Then, the depth-bounded mapping
will be performed to produce a mapping that always satisfies Dbound. Next, the area
recovery step refines the current mapping for reducing the number of SET arrays if
applicable. At the end, the final mapped network is derived. The details of each step
mentioned above will be discussed in the following subsections.
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ALGORITHM 3: Mapping for SET Network
Input: AIG, K, Dbound.
Output: A mapped network.

/* cut generation */
1: PriorityCutEnumeration( );

/* potential width analysis */
2: pWidthBound = AnalyzepWidthBound( );

/* depth-bounded mapping */
3: SETmapDepthOriented( );
4: if (exists a PO with depth > Dbound) then
5: add cuts with pWidth > pWidthBound into CutSet(n) of each node n;
6: SETmapDepthRecovery( );
7: end if

/* area recovery */
8: SETmapAreaRecovery( );

/* mapped network derivation */
9: DeriveFinalMapping( );

4.2. Potential Width Analysis

4.2.1. Potential Width Associated with a Cut. In addition to the traditional costs of cuts
such as depth, area flow [Manohararajah et al. 2006] and exact local area [Mishchenko
et al. 2007a],3 we introduce a new cost associated with a cut c, called potential width,
denoted as pWidth in this work. pWidth is a positive value that estimates the potential
width of an SET array when adopting cut c. Since our goal is to minimize the maximal
width among the SET arrays in the SET network instead of the total width, knowing
the relative width of the SET array is sufficient when adopting a cut. Let us denote the
local function of a node in terms of variables in its cut c as fc. For example, the fc of the
node q in Figure 6 is the function of variables p and e in the cut c. pWidth associated
with c is estimated as the number of disjoint product terms in fc. This is because the
mapped width of an SET array has a positive correlation with the number of product
terms in a function fc as discussed in Section 3. Specifically, since each disjoint product
term is implemented as a configured path in an SET array, the growth of the number
of disjoint product terms will increase the SET width in general. Note that from the
viewpoint of the SET array, pWidth metric just measures the width growth when you
directly configure each conductive path for each disjoint product term in the SET array
without considering any path sharing. However, the proposed technique in Section 3
explores the path sharing among all paths, which means that the resultant width will
be much reduced. We adopt the pWidth metric as an efficient indicator in candidate cut
sorting in the mapping algorithm while the proposed technique in Section 3 is adopted
in synthesizing the final SET network.

Note that pWidth of a cut c cannot be recursively derived from that of its fanin cuts.
This is because pWidth of a cut c is only relevant to fc. In practice, we only calculate
the pWidth for cuts whose sizes are close to K for elevating algorithm efficiency since
the cut associated with the maximal pWidth is usually within these cuts.

4.2.2. The Determination of a Bound of Potential Width. The maximal width among SET
arrays in the SET network is unknown before mapping the final network. Thus, the
goal of the potential width analysis is to preview the width distribution of the SET
network to derive a proper bound of potential width, called pWidthBound. With this

3The area flow and the exact local area are two heuristics for area recovery. The area flow chooses cuts with
a better logic sharing, while the exact local area minimizes the number of sub-functions from a local view.
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ALGORITHM 4: pWidth Bound Analysis
Input: subject graph, K.
Output: pWidthBound.

1: procedure AnalyzepWidthBound( )
2: TradMapDepthOriented( );
3: Q = POs; A = ∅;
4: while (Q has non-PI nodes) do
5: n = PopNode(Q);
6: mark n as processed;
7: c = RepresentativeCut(n);
8: pWidth = ComputepWidth( fc);
9: if (pWidth is not in A) then

10: Push(A, pWidth);
11: end if
12: for (each node m ∈ leaves(c)) do
13: if (m not processed) then
14: PushNode(Q, m);
15: end if
16: end for
17: end while
18: Sort(A);
19: pWidthBound = A[� 0.7 × sizeof(A) �];
20: ClearCut( );
21: return pWidthBound;
22: end procedure

bound, we can decide whether the pWidth of a cut is reasonable from a global view
later.

Algorithm 4 outlines the procedure of determining the pWidthBound. First, we apply
a traditional depth oriented mapping pass to obtain the optimum-depth cut for each
node. Second, we derive a mapping from the POs to PIs based on the representative cuts
of the nodes and record the pWidth of each used cut in an array A without repetition.
Then, A is sorted in an increasing order, and the pWidth in the �0.7 × sizeof(A)�th entry
of sorted A is selected as the pWidthBound heuristically. Using this value is because
we observed that cuts with pWidth much larger than the average pWidth account for
only a minority.

4.3. Depth-Bounded Mapping

The depth-bounded mapping will derive a mapping that satisfies the given Dbound while
not incurs large pWidth. Thus, we give a higher priority to cuts whose pWidth do not
exceed pWidthBound. However, there may exist some cuts with large pWidth but small
depths, which means we may eliminate small depth cuts when pruning cuts with a large
pWidth. Thus, an additional depth recovery mapping pass is performed to recover the
depth.

In the depth-bounded mapping, at first, a depth oriented mapping pass is performed.
In this mapping pass, a cut will be selected as the representative cut when its pWidth
is less than pWidthBound, and its depth is the smallest among the candidate cuts with
pWidth smaller than pWidthBound. Note that a cut c with pWidth exceeding pWidth-
Bound can still be added into the cut set and be used in the cut merging operator of
its predecessor later, the only constraint is that cut c cannot be the representative cut.
During this depth oriented mapping pass, if a node in the subject graph whose repre-
sentative cut has once been pruned, the node is marked as a critical node; otherwise, it
is marked as a non-critical node. The critical nodes are the nodes that tend to generate
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a representative cut with excessive pWidth in the depth oriented mapping, while the
non-critical nodes are the nodes that naturally have representative cuts with pWidth
smaller than pWidthBound.

Next, a depth recovery procedure is performed if needed as shown in the lines of 4-7 of
Algorithm 3. It starts by checking the depth of each PO. If the depth of one PO is greater
than Dbound, it implies that the chosen cuts whose pWidth are less than pWidthBound
are not satisfactory, and some cuts with pWidth larger than pWidthBound are essential
for meeting Dbound. Thus, we add those cuts back to the candidate cuts of each node.
Next, a depth recovery mapping pass is performed. In the depth recovery mapping
pass, we use two different criteria for sorting the candidate cuts at the non-critical and
critical nodes in order to meet Dbound as well as maintain the quality of maximal width.
The criteria adopted in the depth recovery mapping pass are shown as follows:

For the non-critical nodes, depth oriented sorting criteria are adopted to improve
depth. Note that pWidth is not considered in the cut sorting criteria at the non-critical
nodes since these nodes naturally have representative cuts with pWidth not exceed-
ing pWidthBound as mentioned. For the critical nodes, cuts with the same depth are
sorted by pWidth instead in an increasing order for reducing the maximal width. The
third criterion for both the non-critical and critical nodes chooses cuts of smaller size
heuristically. If there is still a tie, then the order of the cuts will be the same as their
order in cut generation.

4.4. Area Recovery

With the mapping produced by the depth-bounded mapping where Dbound has been
satisfied, the area recovery step further reduces area by performing other mapping
passes to adjust the order of the candidate cuts in each node based on either the area
flow or the exact local area heuristics. To avoid increasing maximal width, cuts with
pWidth larger than pWidthBound will be discarded. However, there is an exception: If
a cut c of a node n satisfies (1) pWidth(c) ≤ α× pWidthBound and (2) AreaFlow(c) ≤
β× AreaFlow(RepresentativeCut(n)), then it will be added into the cut set of node n.
This criterion slightly loosens the estimated pWidthBound and reduces the area of the
mapping result. Based on some preliminary experiments, α and β are set as 1.3 and
0.9, respectively.

4.5. Final Mapping Derivation

Having one representative cut in each node, the mapped SET network is derived as
follows: Initially, all of the PO nodes are pushed into a queue Q. Then, a non-PI node
n is extracted from Q and is added into the mapping M at each time, and each node
belonging to the representative cut of node n is added into Q if it is not in the mapping
M yet. This process terminates when Q contains no more non-PI nodes. Next, each
node in the mapping M will be implemented as an SET array with the bounded height
K using the SET array width minimization algorithm proposed in Section 3.

4.6. Overall Flow

Given an AIG, a height constraint K of the SET array and a user-specified Dbound, the
flow of the area-aware decomposition for SET arrays is shown in Figure 7. First, a
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Fig. 7. The overall flow of area-aware decomposition for SET arrays.

set of K-feasible cuts at each node is generated by using the priority cut heuristic.
Second, the pWidthBound is derived through the analysis. Then, a depth oriented
mapping pass will be performed. If the resultant depth after the mapping is larger
than the Dbound, then an additional depth recovery mapping pass will be performed
to produce a mapping satisfying Dbound. Next, the area recovery step further reduces
the number of SET arrays and the final mapping is derived. With this final mapping,
we obtain the number of SET arrays in the SET network, denoted as |SETArray|,
which is equal to the number of logic nodes in the final mapping. After the decom-
position, we derive the disjoint product terms of the sub-function of each logic node
in the final mapping by building the corresponding BDD. Then, the BTS exploration
algorithm and synthesis technique proposed in Section 3 are applied to derive the
corresponding SET array with bounded height K. The final SET network is derived
by connecting these synthesized SET arrays based on the connection in the mapped
network.
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5. EXPERIMENTAL RESULTS

We implemented the SET array width minimization algorithm and the SET network
mapping algorithm in C language and conducted the experiments on a Linux platform
with 64GB memory and 2.40GHz CPU. Each benchmark to be mapped was transformed
into an AIG by ABC [Group 2007]. We also used CUDD package [Somenzi 2009] to build
and manipulate BDDs. The experimental results on the proposed algorithms are shown
in Sections 5.1 and 5.2.

5.1. Comparison of Width for SET Arrays without Decomposition

We compared our SET array width minimization algorithm against the state of the
art [Chen et al. 2014, 2015; Liu et al. 2015] on a set of IWLS [2005] benchmarks.
Since these state-of-the-art algorithms did not consider the height constraint of the
SET array, the decomposition technique proposed in Section 4 was not applied in the
experiments of this subsection. Instead, we synthesized a large SET array for each PO
of the given Boolean circuits as the previous works did for a fair comparison. Thus, the
resultant width of a benchmark refers to the summation of widths of SET array from
each PO.

5.1.1. Comparison of BTS Exploration Algorithms. The first experiment was designed to
show the effectiveness of the BTS exploration algorithm in width reduction. For a fair
comparison, we applied the proposed width minimization algorithm and the one in Liu
et al. [2015] over the same set of product terms produced by BDD using a BDD variable
reordering heuristic CUDD_REORDER_SYMM_SIFT in the CUDD package [Somenzi
2009].

The experimental results are shown in Table I. In Table I, Column 1 lists the
name of each benchmark. Column 2 presents the number of PIs and POs of the
benchmark. Column 3 shows the number of product terms in the benchmarks us-
ing CUDD_REORDER_SYMM_SIFT heuristic. The number of BTSs and the resultant
width of a benchmark are shown in Columns 4 and 5, respectively. The last column
presents the CPU time of BTS exploration algorithms. The last row shows the ratios
of BTS numbers and the resultant width between different approaches.

According to Table I, our algorithm explored 23% more BTSs on average compared
to Liu et al. [2015] for the same set of product terms. Our approach also has a 35%
reduction in width on average compared to Liu et al. [2015]. This indicates that explor-
ing more BTSs can reduce the width significantly. Also, the required CPU time for both
approaches is very close. In summary, our algorithm provides a better combination
of variable order, row configuration, and product term order to SET array synthesis
compared to Liu et al. [2015].

5.1.2. Comparison of Overall SET Array Synthesis Flows. In addition to the proposed width
minimization technique, we also integrated the BDD variable reordering heuristic [Fey
and Drechsler 2006] into our synthesis flow to further reduce the resultant width by
minimizing the derived number of product terms in the circuits. Thus, we can compare
the results of the overall synthesis flows among the state of the art [Chen et al. 2014,
2015; Liu et al. 2015] and ours.

To obtain a smaller number of product terms in the product term derivation stage,
Liu et al. [2015] used both the CUDD_REORDER_SYMM_SIFT heuristic [Liu et al.
2015] and a linear threshold logic gate approach, while Chen et al. [2015] used a
dynamic shifting based BDD variable ordering algorithm. Chen et al. [2014] derived
the product terms from the BDD without mentioning further information.

The experimental results and comparisons are shown in Table II. The meaning of
columns and rows are the same as Table I. According to Table II, the proposed synthesis
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Table I. Comparison of BTS Exploration Algorithms for the Same Set of Product Terms

Statistics |PT| |BTS| Width Time(s)
Bench. PI PO SymmSift [Liu et al. 2015] Ours [Liu et al. 2015] Ours [Liu et al. 2015] Ours

C17 5 2 8 3 4 23 19 <0.01 <0.01
cm138a 6 8 48 40 40 64 64 <0.01 <0.01
cm151a 12 2 17 0 0 79 68 <0.01 <0.01
i1 25 16 38 13 18 115 79 <0.01 0.01
cm85a 11 3 76 22 38 168 162 0.01 0.01
cm163a 16 5 49 28 32 130 94 <0.01 <0.01
cm162a 14 5 73 36 36 205 197 <0.01 <0.01
cmb 16 4 26 22 22 35 34 <0.01 <0.01
x2 10 7 30 13 13 88 79 <0.01 <0.01
cu 14 11 26 4 4 91 84 <0.01 <0.01
pm1 16 13 54 30 39 137 97 <0.01 <0.01
pcle 19 9 45 28 28 91 92 <0.01 <0.01
cc 21 20 55 25 26 130 124 <0.01 <0.01
pcler8 27 17 152 80 108 461 241 0.01 <0.01
unreg 36 16 64 16 16 211 194 <0.01 <0.01
b9 41 21 262 135 152 808 597 0.01 <0.01
count 35 16 184 121 136 403 322 0.01 0.01
lal 26 19 181 84 114 591 336 <0.01 <0.01
sct 19 15 110 58 67 282 222 0.01 <0.01
stepper. 29 29 698 346 502 2175 1224 0.01 0.01
cht 47 36 90 17 17 335 323 <0.01 <0.01
apex7 49 37 1049 430 589 3620 2173 0.16 0.04
c8 28 18 86 33 40 258 217 <0.01 0.01
example2 85 66 537 230 254 1812 1409 0.05 0.01
usb phy 113 116 392 148 155 1171 1047 0.02 <0.01
sasc 133 129 1405 627 700 4681 3681 0.04 0.01
simple spi 148 144 3015 1655 2312 8816 4315 0.71 0.06
i2c 147 142 2942 1969 2165 6891 4489 2.05 0.02
Ratio - - - 1 1.23 1 0.65 - -

flow can lead to 29%, 41%, and 25% reductions in width on average compared to Chen
et al. [2014], Liu et al. [2015], and Chen et al. [2015], respectively. These reductions in
width are contributed by exploring more BTSs or collecting fewer number of product
terms. The required CPU time in our approach is shown in the last column of Table II.

Note that the comparison with Chen et al. [2015] shows that even if our approach
has more product terms in the first place, it can still have 25% reduction in width,
which demonstrates that the proposed BTS exploring algorithm is effective.

5.2. Comparison of Total Area in SET Networks

Since this is the first work for SET network mapping, we design a naı̈ve SET network
mapping algorithm as the basis for comparison. This naı̈ve mapping algorithm also
adopts priority cuts and involves a depth-oriented mapping pass and area recovery step.
However, compared with the proposed SET network mapping algorithm, the pWdith
bound analysis stage described in Algorithm 4 is totally removed, and the candidate
cuts at each node in the subject graph are sorted in a simple way. Specifically, in the
depth-bounded (area recovery) mapping pass of the naı̈ve algorithm, the candidate cuts
are first sorted by depth (area flow or exact local area) and then by pWidth (the cut
with a smaller pWidth will be chosen). Although this naı̈ve scheme can also reduce
the maximal width of the resultant SET network, it may sacrifice some good candidate
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Table II. Comparison of the Overall SET Array Synthesis Flows

Statistics |PT| Width Time (s)
Bench. PI PO [Chen’14] [Liu’15] [Chen’15] Ours [Chen’14] [Liu’15] [Chen’15] Ours Ours

C17 5 2 8 8 7 7 22 26 25 23 <0.01
cm138a 6 8 48 48 48 48 129 64 134 64 <0.01
cm151a 12 2 17 25 - 17 75 108 - 70 <0.01
i1 25 16 38 31 30 31 97 76 95 79 0.02
cm85a 11 3 - 49 98 48 - 168 239 118 <0.01
cm163a 16 5 31 27 27 27 114 77 100 62 0.01
cm162a 14 5 41 37 37 37 152 120 131 116 0.01
cmb 16 4 26 26 26 26 55 35 51 34 <0.01
x2 10 7 40 33 28 30 122 103 98 89 <0.01
cu 14 11 23 22 22 23 95 78 95 77 0.01
pm1 16 13 49 37 37 40 136 81 102 82 0.01
pcle 19 9 45 45 45 45 116 91 112 92 0.01
cc 21 20 53 54 53 47 193 129 179 131 0.01
pcler8 27 17 67 68 61 61 234 208 198 153 0.03
unreg 36 16 48 49 48 48 194 209 195 193 0.03
b9 41 21 376 200 177 245 1190 649 566 594 0.13
count 35 16 200 184 184 184 444 403 394 322 0.08
lal 26 19 171 160 168 169 543 407 433 328 0.05
sct 19 15 153 134 103 103 439 448 354 270 0.02
stepper. 29 29 - 667 661 669 - 2106 1539 1101 0.25
cht 47 36 81 91 81 81 340 336 344 323 0.09
apex7 49 37 - 1440 497 513 - 4576 1967 1163 0.61
c8 28 18 85 88 79 80 249 231 254 206 0.04
example2 85 66 447 403 367 383 1144 1393 979 1016 1.13
usb phy 113 116 - 389 335 364 - 1161 1265 968 1.21
sasc 133 129 - 794 798 727 - 2284 2903 1876 2.19
simple spi 148 144 - 1959 - 1595 - 5872 - 3336 3.35
i2c 147 142 - 1858 964 1060 - 4610 3228 2551 5.44

- - 1 - - 0.84 1 - - 0.71 -
Ratio - - - 1 - 0.76 - 1 - 0.59 -

- - - - 1 1.02 - - 1 0.75 -

cuts during the cut sorting without the pWdith bound analysis stage and other schemes
proposed in Section 4.

The experiments were conducted on the combinational part of a set of IWLS 2005
benchmarks. Note that we chose the benchmarks with larger node size than the bench-
marks used in the experiments of Section 5.1 in order to demonstrate the effectiveness
of the proposed mapping algorithm. The parameter K in the mapping was set to the
height constraint 10 of the SET array [Liu et al. 2015], and the maximal number of
priority cuts stored at each node was set to 8. Furthermore, we set the depth bound,
Dbound, to the optimal depth of each benchmark produced by the command If in the
ABC package, which performs optimum-depth FPGA mapping. The area recovery step
in the both algorithms involved one pass of area flow oriented mapping and two passes
of exact local area oriented mapping.

Table III presents the experimental result of the naı̈ve algorithm and the proposed
SET network mapping algorithm. In Table III, Column 3 shows the resultant depth
of the mapped SET network, which equals to the Dbound, that is, the optimal depth of
each benchmark. Column 4 shows the pWidthBound derived from the pWidth bound
analysis step. Furthermore, the number of SET arrays in the resultant SET network
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Table III. Comparison between the Naı̈ve Mapping Approach and the Proposed Mapping Approach

Statistics |SETArray| MaxWidth Total Area Time(s)
Bench. PI PO Depth pWidthBound Naı̈ve Ours Naı̈ve Ours Naı̈ve Ours Naı̈ve Ours

ss pcm 106 96 2 5 53 54 9 8 477 432 <0.01 0.01
example2 85 66 2 9 88 88 39 32 3432 2816 0.03 0.09
usb phy 113 116 2 8 83 82 29 12 2407 984 0.03 0.06
x4 94 71 2 8 118 99 25 24 2950 2376 0.09 0.19
sasc 133 129 2 8 133 137 61 29 8113 3973 0.05 0.11
simple spi 148 144 2 8 181 178 39 29 7059 5162 0.13 0.32
i2c 147 142 3 10 250 230 57 22 14250 5060 0.10 0.28
systemcdes 322 255 4 18 455 604 147 78 66885 47112 0.44 0.74
spi 276 274 5 28 792 595 226 40 178992 23800 0.39 0.62
wb dma 217 215 5 13 1013 844 56 27 56728 22788 0.19 0.40
des area 368 192 4 52 1085 706 224 224 243040 158144 0.72 1.11
systemcaes 260 129 5 36 1820 1370 496 236 902720 323320 1.09 3.88
ac97 ctrl 2283 2247 3 12 2608 2667 94 44 245152 117348 0.75 1.66
mem ctrl 1198 1235 6 22 3720 3258 415 101 1543800 329058 1.61 2.27
usb funct 128 121 4 43 2623 2989 682 97 1788886 289933 1.02 1.46
aes core 259 129 2 86 807 692 1412 345 1139484 238740 1.10 1.86
pci bridge32 162 207 5 30 4606 4517 513 101 2362878 456217 1.50 2.96
wb conmax 1130 1416 5 18 8585 8171 58 58 497930 473918 2.79 6.76
ethernet 98 115 6 30 12952 11793 144 65 1865088 766545 2.90 4.58
des perf 234 64 3 52 4305 7843 776 246 3340680 1929378 5.71 12.2
vga lcd 89 109 5 19 32360 28984 68 47 2200480 1362248 4.17 6.2
Ratio - - - - 1 0.97 1 0.33 1 0.40 - -
Total - - - - - - - - - - 24.8 47.8

and the maximal width among these SET arrays are shown in Columns 5 and 6,
respectively. Column 7 shows the total area in the mapped SET network, which is
calculated by the product of the numbers in Columns 5 and 6. The last column shows
the CPU time of the mapping algorithms for SET network measured in seconds.

According to Table III, our approach has a 3% reduction in the number of SET arrays
and a 67% reduction in the maximal width of the SET network compared to the naı̈ve
algorithm on average. As a result, the proposed mapping leads to a 60% reduction in the
total area of the SET network on average. The proposed mapping algorithm consumed
23 more seconds for all the benchmarks since more calculations of pWidth are involved
than the naı̈ve approach.

6. CONCLUSION

This article presents two algorithms for area-aware decomposition of an SET array to
accommodate the device-level height constraint. The first one is a width minimization
algorithm that leads to a larger reduction in width compared to the state of the art.
The second one is a depth-bounded mapping for an SET network that balances the
width of each SET array in the SET network. The combination of these two algorithms
effectively reduces the total area in the SET network.
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Görschwin Fey and Rolf Drechsler. 2006. Minimizing the number of paths in BDDs: Theory and algo-
rithm. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 25, 1 (Jan. 2006), 4–11. DOI:http://dx.doi.org/
10.1109/TCAD.2005.852662

Anandaroop Ghosh, Somnath Paul, Jongsun Park, and Swarup Bhunia. 2014. Improving energy efficiency in
FPGA through judicious mapping of computation to embedded memory blocks. IEEE Trans. VLSI Syst.
22, 6 (Jun. 2014), 1314–1327. DOI:http://dx.doi.org/10.1109/TVLSI.2013.2271696

Berkeley LSV Group. 2007. ABC: A System for Sequential Synthesis and Verification. (Sep. 2007). Retrieved
May 7, 2015 from http://www.eecs.berkeley.edu/∼alanmi/abc/.

Hideki Hasegawa and Seiya Kasai. 2001. Hexagonal binary decision diagram quantum logic circuits using
schottky in-plane and wrap-gate control of GaAs and InGaAs nanowires. Physica Es 11, 2–3 (2001),
149–154. DOI:http://dx.doi.org/10.1016/S1386-9477(01)00193-X

Karel Heyse, Karel Bruneel, and Dirk Stroobandt. 2012. Mapping logic to reconfigurable FPGA routing. In
2012 22nd International Conference on Field Programmable Logic and Applications (FPL). 315–321.
DOI:http://dx.doi.org/10.1109/FPL.2012.6339224.

IWLS. 2005. IWLS 2005 Benchmarks. (June 2005). Retrieved March, 2015 from http://iwls.org/iwls2005/
benchmarks.html.

Seiya Kasai, M. Yumoto, and Hideki Hasegawa. 2001. Fabrication of GaAs-based integrated 2-bit half and
full adders by novel hexagonal BDD quantum circuit approach. In 2001 International Semiconductor
Device Research Symposium. 622–625. DOI:http://dx.doi.org/10.1109/ISDRS.2001.984596

Chian-Wei Liu, Chang-En Chiang, Ching-Yi Huang, Yung-Chih Chen, Chun-Yao Wang, Suman Datta,
and Vijaykrishnan Narayanan. 2015. Synthesis for width minimization in the single-electron
transistor array. IEEE Trans. VLSI Syst. 23, 12 (Dec. 2015), 2862–2875. DOI:http://dx.doi.org/
10.1109/TVLSI.2014.2386331

Chian-Wei Liu, Chang-En Chiang, Ching-Yi Huang, Chun-Yao Wang, Yung-Chih Chen, Suman Datta,
and Vijaykrishnan Narayanan. 2014. Width minimization in the single-electron transistor array syn-
thesis. In Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014. 1–4.
DOI:http://dx.doi.org/10.7873/DATE.2014.135

Lu Liu, Xueqing Li, V. Narayanan, and S. Datta. 2015. A reconfigurable low-power BDD logic architecture
using ferroelectric single-electron transistors. IEEE Trans. Electron. Device. 62, 3 (Mar. 2015), 1052–
1057. DOI:http://dx.doi.org/10.1109/TED.2015.2395252

Lu Liu, Vijay Narayanan, and Suman Datta. 2013. A programmable ferroelectric single electron transistor.
Appl. Phys. Lett. 102, 053505 (2013), 1–4. DOI:http://dx.doi.org/10.1063/1.4791601

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 70, Pub. date: September 2016.

http://dx.doi.org/10.1145/2422094.2422099
http://dx.doi.org/10.1109/TCAD.2013.2267453
http://dx.doi.org/10.7873/DATE.2014.136
http://dx.doi.org/10.1109/VLSI-DAT.2015.7114494
http://dx.doi.org/10.7873/DATE.2013.362
http://dx.doi.org/10.1145/296399.296425
http://dx.doi.org/10.1109/FPL.2013.6645565
http://dx.doi.org/10.1109/FPL.2013.6645565
http://dx.doi.org/10.1109/NANOARCH.2008.4585793
http://dx.doi.org/ ignorespaces 10.1109/TCAD.2005.852662
http://dx.doi.org/ ignorespaces 10.1109/TCAD.2005.852662
http://dx.doi.org/10.1109/TVLSI.2013.2271696
http://www.eecs.berkeley.edu/protect $elax sim $alanmi/abc/
http://dx.doi.org/10.1016/S1386-9477(01)00193-X
http://dx.doi.org/10.1109/FPL.2012.6339224
http://iwls.org/iwls2005/benchmarks.html
http://iwls.org/iwls2005/benchmarks.html
http://dx.doi.org/10.1109/ISDRS.2001.984596
http://dx.doi.org/ ignorespaces 10.1109/TVLSI.2014.2386331
http://dx.doi.org/ ignorespaces 10.1109/TVLSI.2014.2386331
http://dx.doi.org/10.7873/DATE.2014.135
http://dx.doi.org/10.1109/TED.2015.2395252
http://dx.doi.org/10.1063/1.4791601


70:20 C.-H. Ho et al.

Lu Liu, Vinay Saripalli, Euichul Hwang, Vijaykrishnan Narayanan, and Suman Datta. 2011. Multi-gate
modulation doped In0.7Ga0.3 as quantum well FET for ultra low power digital logic. ECS Trans. 35, 3
(2011), 311–317. DOI:http://dx.doi.org/10.1149/1.3569923

Valavan Manohararajah, Stephen D. Brown, and Zvonko G. Vranesic. 2006. Heuristics for area minimization
in LUT-based FPGA technology mapping. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 25, 11 (Nov.
2006), 2331–2340. DOI:http://dx.doi.org/10.1109/TCAD.2006.882119

Alan Mishchenko, Satrajit Chatterjee, and Robert K. Brayton. 2007a. Improvements to technology mapping
for LUT-based FPGAs. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 26, 2 (Feb. 2007), 240–253.
DOI:http://dx.doi.org/10.1109/TCAD.2006.887925

Alan Mishchenko, Sungmin Cho, Satrajit Chatterjee, and Robert Brayton. 2007b. Combinational and sequen-
tial mapping with priority cuts. In IEEE/ACM International Conference on Computer-Aided Design,
2007 (ICCAD 2007). 354–361. DOI:http://dx.doi.org/10.1109/ICCAD.2007.4397290

Henk W. Ch. Postma, Tijs Teepen, Zhen Yao, Milena Grifoni, and Cees Dekker. 2001. Carbon nanotube
single-electron transistors at room temperature. Science 293, 5527 (2001), 76–79. DOI:http://dx.doi.org/
10.1126/science.1061797

Vinay Saripalli, Lu Liu, Suman Datta, and Vijaykrishnan Narayanan. 2010. Energy-delay performance of
nanoscale transistors exhibiting single electron behavior and associated logic circuits. J. Low Power
Electron. 6, 3 (2010), 415–428.

Fabio Somenzi. 2009. CUDD: CU decision diagram package - release 2.4.2. (2009). Retrieved May 25, 2015
from http://vlsi.colorado.edu/∼fabio/CUDD/.

V. L. Souza and A. G. Silva-Filho. 2013. MogaMap: An application of multi-objective genetic algo-
rithm for LUT-based FPGA technology mapping. In 2013 IEEE 20th International Conference on
Electronics, Circuits, and Systems (ICECS). IEEE, Washington, DC, 485–488. DOI:http://dx.doi.org/
10.1109/ICECS.2013.6815459

Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed. 2003. Room temperature nanocrystalline silicon
single-electron transistors. J. Appl. Phys. 94, 1 (2003).

Eric W. Weisstein. 1999. Mixed Graph. (1999). Retrieved June 2, 2015 from http://mathworld.wolfram.com/
MixedGraph.html From MathWorld–A Wolfram Web Resource.

Zheng Zhao, Chian-Wei Liu, Chun-Yao Wang, and Weikang Qian. 2014. BDD-based synthesis of reconfig-
urable single-electron transistor arrays. In 2014 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). ACM, New York, NY, 47–54. DOI:http://dx.doi.org/10.1109/ICCAD.2014.7001328

Lei Zhuang, Lingjie Guo, and Stephen Y. Chou. 1998. Silicon single-electron quantum-dot transistor switch
operating at room temperature. Appl. Phys. Lett. 72, 10 (1998).

Received September 2015; revised December 2015; accepted February 2016

ACM Transactions on Design Automation of Electronic Systems, Vol. 21, No. 4, Article 70, Pub. date: September 2016.

http://dx.doi.org/10.1149/1.3569923
http://dx.doi.org/10.1109/TCAD.2006.882119
http://dx.doi.org/10.1109/TCAD.2006.887925
http://dx.doi.org/10.1109/ICCAD.2007.4397290
http://dx.doi.org/ ignorespaces 10.1126/science.1061797
http://dx.doi.org/ ignorespaces 10.1126/science.1061797
http://vlsi.colorado.edu/protect $elax sim $fabio/CUDD/
http://dx.doi.org/ ignorespaces 10.1109/ICECS.2013.6815459
http://dx.doi.org/ ignorespaces 10.1109/ICECS.2013.6815459
http://mathworld.wolfram.com/ ignorespaces MixedGraph.html
http://mathworld.wolfram.com/ ignorespaces MixedGraph.html
http://dx.doi.org/10.1109/ICCAD.2014.7001328

